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Abstract

In this paper we present a novel method for plausible real-time ren-
dering of indirect illumination effects for diffuse and non-diffuse
surfaces. The scene geometry causing indirect illumination is cap-
tured by an extended shadow map, as proposed in previous work,
and secondary light sources are distributed on directly lit surfaces.
One novelty is the rendering of these secondary lights’ contribution
by splatting in a deferred shading process, which decouples ren-
dering time from scene complexity. An importance sampling strat-
egy, implemented entirely on the GPU, allows efficient selection
of secondary light sources. Adapting the light’s splat shape to sur-
face glossiness also allows efficient rendering of caustics. Unlike
previous approaches the approximated indirect lighting does barely
exhibit coarse artifacts – even under unfavorable viewing and light-
ing conditions. We describe an implementation on contemporary
graphics hardware, show a comparison to previous approaches, and
present adaptation to and results in game-typical applications.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;
I.3.3 [Computer Graphics]: Hardware Architecture—Graphics
processors;

Keywords: global illumination, real-time rendering, shadow
maps, hardware-assisted rendering

1 Introduction

Indirect illumination is a subtle, yet important component for real-
istic rendering. Due to its global nature the computation of indirect
illumination is notoriously slow. Thus in interactive graphics in-
direct illumination is mainly present in the form of precomputed
radiosity light maps, or, as a simple yet impressive approximation,
by using ambient occlusion.

On the other hand, coarse approximations for indirect light are usu-
ally satisfactory. In most cases one-bounce indirect light is visually
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sufficient [Tabellion and Lamorlette 2004], and even occlusion for
the indirect light can be ignored in many cases. However, indirect
light must be temporally consistent and may not exhibit flickering.

In this paper we present a novel algorithm for the approximate com-
putation of indirect light, which also relies on the aforementioned
simplificating assumptions. Our algorithm runs in realtime for typ-
ical game scenarios. It computes approximate, time-consistent one-
bounce indirect illumination from a point light. Both camera and
light source can be dynamic. Our algorithm is based on the idea of
Reflective Shadow Maps [Dachsbacher and Stamminger 2005]: for
a point light source, all surfaces causing one-bounce indirect illumi-
nation are captured by a shadow map. In order to compute indirect
illumination from these surfaces, a Reflective Shadow Map stores
additional information, i.e. surface location, normal and reflected
radiant flux, for each pixel. The indirect illumination is approxi-
mated by gathering the contribution from a well-chosen subset of
these surface samples, also called pixel lights. We reorganized the
computation of the indirect light in such a way that we can achieve
good results with many fewer indirect light sources on average,
which increases performance significantly. Essentially, instead of
gathering the indirect light as it is done with Reflective Shadow
Maps, we use a shooting approach. For every indirect light, we
splat its contribution into its screen space neighborhood. By this,
we can better limit the area of influence of the indirect lights. The
set of indirect light sources is the same for all pixels of an image, so
noise is reduced at the cost of much less visible bias. By keeping the
indirect light source positions consistent in between frames, flick-
ering can be largely avoided. Altogether, we can reduce the number
of indirect lights and achieve significantly better performance.

Furthermore, we can compute indirect lighting from glossy reflec-
tors, which enables us to obtain both indirect diffuse light and caus-
tics in good quality with a unified approach. This is shown in the
teaser, where we can see some indirect lights for a diffuse and a
glossy scene (first and third image), and the resulting images with
indirect diffuse and glossy light (second and fourth image). The
fifth image shows a screenshot of a Quake walkthrough with indi-
rect light, which is rendered in real-time.

2 Previous Work

Indirect light is usually generated in offline rendering using ray trac-
ing or radiosity. In [Tabellion and Lamorlette 2004], Tabellion et al.
presented a simplified indirect illumination model that has been
used for film production rendering. Even for their high-quality de-
mands one-bounce indirect lighting turned out to be sufficient.

The first paper that introduced indirect radiosity-like lighting into
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Figure 1: Diffuse indirect illumination caused by secondary light sources. Their positions are determined by a uniform sampling of the RSM.

interactive graphics was Instant Radiosity [Keller 1997]. A small
set of photons (e.g. 200) is traced from the light source stochas-
tically. Along the path of the photons indirect light sources are
placed that approximate the indirect lighting. The contribution of
these indirect light sources is computed using shadow maps and the
accumulation buffer.

Ambient occlusion and bent normals are a simple approxima-
tion to modify local lighting in a way that fakes indirect light
[Landis 2002]. The approach requires some precomputation but
can then achieve indirect lighting effects with almost no perfor-
mance penalty. Dynamic scenes require special treatment, however.
Bunnell [Bunnell 2005] computes ambient occlusion for dynamic
scenes on a per-vertex level. He also mentions indirect lighting
caused by constantly emitting surfaces.

Reflective Shadow Maps [Dachsbacher and Stamminger 2005] are
a more general approach for the inclusion of indirect light into in-
teractive applications. For every scene point to be lit, a set of pixels
of a shadow map are considered as indirect light sources. Their
indirect contribution is gathered by a fragment program, where oc-
clusion of these indirect lights is neglected. A rather big number
of samples is necessary to obtain alias-free images, which requires
high computational cost. Together with a screen-space interpola-
tion step for indirect light, interactive to real-time frame rates are
possible for moderate scenes.

Our approach computes indirect light in a deferred shading step.
Hargreaves [Hargreaves 2004] discusses deferred shading in detail
and gives performance hints and implementation strategies.

Wyman [Wyman 2005a; Wyman 2005b] presents techniques for
rendering refractions in dynamic scenes for distant and nearby
geometry. Shah et al. [Shah and Pattanaik 2005] describe an ap-
proach for real-time rendering of caustics from refractive and re-
flective surfaces solely based on shadow-maps.

Our approach requires a fast way to determine a set of light sources
that represents complex illumination. In [Clarberg et al. 2005], an
elegant method for this is presented for probability distributions
given in a haar wavelet basis. First, a set of light sources is uni-
formly distributed. In a top-down approach the wavelet representa-
tion of the desired probability distribution is traversed and the light
source samples are shifted according to the wavelet coefficients, so
that the sample density adapts to the probability distribution. This
process requires no iteration and is fast enough to be used within an
interactive application.

3 Algorithm

Our method is based on the idea of Reflective Shadow Maps
(RSMs) [Dachsbacher and Stamminger 2005]. It also uses an ex-
tended shadow map to create first-bounce indirect light sources.

However, the way these indirect lights are determined and how the
contribution of these lights is computed are different. As a result,
we achieve a much more robust and faster algorithm. An overview
of the algorithm is depicted in Fig. 1.

In the next sections we describe the idea of our new algorithm, show
how the algorithm can be adapted to glossy indirect light and how
performance can be further improved using fast importance sam-
pling and efficient splatting. We start with the description for dif-
fuse scenes, the extension to glossy indirect light is possible and is
described later.

3.1 Reflective Shadow Maps

Our algorithm uses a shadow map to determine the surfaces in the
scene that cause first-bounce indirect illumination. Because we
need more information than only depth, we additionally store with
every pixel the world space position, the surface normal and the
reflected flux. Since this extended shadow map is the same as for
the Reflective Shadow Map, we keep on referring to it as Reflective
Shadow Map (RSM).

Each pixel of an RSM can be considered as a secondary light
source. Indirect light is computed by considering all secondary
lights as local point lights. These point lights represent a small sur-
face light, so they are hemispherical with surface normal as main
direction. We call such lights pixel lights. For a diffuse pixel light
p with world space location xp, direction np and flux Φp, the radiant
intensity emitted into direction ω is:

Ip(ω) = Φp max{0,np ◦ω}, (1)

where ◦ denotes the dot product. The irradiance due to p at a surface
point x with normal n is then:

Ep(x,n) = Ip

(

x− xp

||x− xp||

)

max{0,n◦ (xp − x)}
||xp − x||3

. (2)

In the original Reflective Shadow Map approach [Dachsbacher and
Stamminger 2005], indirect light for a particular point p is gath-
ered from the RSM. Since gathering from all pixels is far too ex-
pensive, only a subset is used that depends on the point to be il-
luminated. The subset is focused to pixels close to p by sampling
the shadow map neighborhood of p. Roughly 300 such samples are
necessary to obtain satisfactory results in the examples. Deferred
shading techniques and screen-space interpolation are necessary to
achieve a fast enough approximation. Since the sampling pattern
varies over the image, noise and striping artifacts become quickly
apparent if the number of samples is too low. In order to avoid futile
expensive fragment shader passes, deferred shading is used. With a
screen-space interpolation technique the number of fragment shader
passes is further reduced.
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Figure 2: Emission of diffuse and glossy pixel lights (left and right,
respectively).

3.2 Splatting Indirect Illumination

In our novel approach the evaluation process is reversed: instead
of iterating over all image pixels and gathering the indirect light
from the RSM, we select a subset of RSM pixels, the pixel lights,
and distribute their light to the image pixels, using a splat in screen
space.

By nature, this splatting algorithm is a deferred shading pass. So we
need buffers containing the world space position and normal and the
material parameters for each screen pixel as seen from the viewer’s
camera. They are stored as textures that can be used as render tar-
gets, and are updated whenever the camera moves. When rendering
the final image, the deferred shading buffers are used to compute
the local illumination and shadowing from the light source, before
the indirect illumination is computed.

Then the contribution of the indirect lights is computed directly on
the deferred shading buffers. In general, such indirect lights only
generate significant indirect light in their direct neighborhood. To
account for this, we splat a quadrilateral in screen space at the po-
sition of the point light. The splat must be big enough to cover all
fragments that can receive significant light. This size can be eas-
ily computed from the intensity of the pixel light and its distance
to the camera. Details on this computation and tighter bounds are
described in the next section.

For each covered pixel we retrieve the information of the visible
geometry from the deferred shading buffers. Together with the
light source parameters (associated with the quadrilateral) a frag-
ment shader evaluates the pixel light’s contribution to the underly-
ing pixel according to Eq. 2 and accumulates it in the frame buffer.
Thus we splat the contribution of each secondary light source onto
the final image.

The computation of the quadrilateral can be efficiently implemented
in a vertex shader, where the RSM, which stores the information
about surfaces causing the indirect illumination, is sampled and the
quadrilateral positioned. As a vertex shader only processes geom-
etry and does not create geometry, the vertex data for the quadri-
laterals is sent through the pipeline and modified accordingly. The
sampling pattern for the RSM is provided as a texture and each
quadrilateral has a texture coordinate to select a sampling position
from this texture.

3.3 Non-diffuse Surfaces

We can easily adapt our method to render caustics and indirect il-
lumination from glossy surfaces. To this end, we have to use pixel
lights with a non-diffuse emission characteristic. Fig. 2 compares
the emission of diffuse and glossy pixel lights.

For Phong-like surfaces, the emission of a glossy pixel light p with
Phong exponent P is

Ip(ω) = Φp max{0,(rp ◦ω)}P, (3)

Figure 3: We adapt the bounding geometry for secondary light
sources to reflection properties of the surface. The left image shows
a diffuse, the right image a glossy reflection.

where rp is main light direction of p, which in turn is the reflection
direction of light incident at p. rp can be precomputed per glossy
pixel light and is then a parameter of the light source such as P.
Note that the emission should also be clamped at the surface of p,
so that no light is emitted backwards.

Rendering with such light sources causes, as often seen in global
illumination algorithms, problems along common boundaries of
walls. This is because the illumination integral has a singular-
ity, which is difficult to integrate numerically. For RSMs [Dachs-
bacher and Stamminger 2005] these problems are largely reduced
by slightly moving the pixel lights in negative normal direction.
This is a possible work-around for diffuse illumination, but with
glossy reflection the problem becomes more apparent. For this, we
replace the constant exponent P by P′

p(x) = min{P,P||x− xp||a},
where a > 0 is a user-defined parameter. As a consequence, the
narrow high intensity singularity is widened near the light source
and thus less noticeable.

Due to their narrow shape, a screen space quad is a very wasteful
approximation for a glossy pixel light. Instead, a tighter bounding
geometry is mandatory in this case, as it is described in the next
session. With such tight bounds, indirect glossy illumination can be
achieved at similar speed as for the diffuse case. Usually, a higher
number of glossy pixel lights is necessary, but on the other hand the
region of influence is smaller and covers less pixels. Fig. 4 shows
examples for caustics generated with our approach.

3.4 Tighter Bounding Geometry

With our approach, the performance bottlenecks are the fragment
shader execution and memory bandwidth. Obviously an axis-
aligned box in screen space is a wasteful representation and thus,
as long as vertex processing does not become a critical factor, we

Figure 4: A real-time rendering of a metal ring and its caustics on a
wood plate at more than 95 frames per second and a refractive glass
tweety (only refraction at the back-facing surface) at 150 frames
per second.
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Figure 5: Importance warping for a single level of the hierarchical importance sampling as described in Sec. 3.5.

can afford to put more stress on the vertex engine and create tighter
bounding volumes. Ideally, these bounds are computed and ren-
dered in world space, which also allows us to make use of early-z
tests to reduce fragment shader executions.

The goal is to compute a simple bounded region, outside of which
the illumination falls below a threshold. As one can see in Fig. 3, for
a diffuse pixel light, this region is egg-shaped, and for glossy sur-
faces the shape is similar to a Phong lobe. Note that these surfaces
are iso-surfaces of illumination that include spatial attenuation and
are not polar plots of exitant radiance!

For practical reasons, we use ellipsoids as bounds in both cases. For
each pixel light, we have to compute the ellipsoid parameters and
we transform a spherical triangle mesh (with low triangle count)
accordingly. In the Appendix, we describe how the parameters of
the ellipsoids can be computed quickly for diffuse and for Phong-
like surfaces depending on the Phong exponent.

3.5 Importance Sampling

In order to adapt the sampling pattern for the RSM to its actual flux
distribution, we perform an importance sampling as proposed by
Clarberg et al. [Clarberg et al. 2005] by hierarchical warping. As
a start, we assume that the scene consists solely of diffuse surfaces
and more samples are to be placed at parts of the scene with higher
flux, i.e. as probability distribution we use the normalized flux.

Each level of the hierarchical warping consists of a vertical and
horizontal warping step according to the flux distribution. We be-
gin with a set of uniformly distributed sample points si = (xi,yi)

T ,
xi,yi ∈ [0;1) with sample weight wi = 1. Figure 5 depicts the warp-
ing according to the coarsest level: the initial sample set (Figure 5b)
is partitioned into two rows according to the upper and lower av-
erage flux (Φtop and Φbottom, Figure 5a). The sample points are
scaled such that the separation border halves the sample area [0;1)2

(Figure 5c). A new sample point’s y′i is obtained with:

Φr =
Φtop

Φtop +Φbottom
(4)

y′i =







yi/(2Φr) if yi < Φr

(1+ yi −2Φr)/(2(1−Φr)) otherwise
(5)

To compensate for the varying sampling densities, the sample
weights are computed such that the total weight of all samples re-
mains equal:

w′
i =







wi/(2Φr) if yi < Φr

wi/(2(1−Φr)) otherwise
(6)

After the vertical warping, the upper and lower halves are warped
analogous to obtain x′i for each sample (Figure 5d). The warped
sampling pattern (Figure 5e) is used to sample the RSM and de-
termine the secondary light sources. The flux taken from the RSM
is multiplied with a sample’s weight before its contribution to the
scene is computed. We refer to this warping strategy as method
A. We also experimented with a simpler and thus faster variant
(method B) which performs the horizontal warping for all samples,
not independently for the upper and lower half. The sample warp-
ing is done hierarchical and after a vertical and horizontal step, we
proceed on the four quadrants recursively.

The importance sampling is particularly important for scenes with
non-diffuse surfaces, as these require more samples to approximate
their global illumination effects more accurately. We propose to
perform the importance sampling not just according to the flux,
but to a probability distribution obtained from the product of the
flux and the maximum value of the BRDF. When using a energy-
preserving Phong illumination model, the maximum value of its
normalized BRDF is the Phong exponent P.

Another observation leads to a further criterion for importance sam-
pling: the ambient occlusion term O, used in many computer games
and film productions, is the ratio of environment light a surface
point would be likely to receive. This is done by shooting rays into
the hemisphere above a surface point and computing the ratio be-
tween rays not intersecting other surfaces and the total number of
rays. Usually only occluders in near proximity are considered for
computing this term. In other words: the ambient occlusion term
provides information, whether other surfaces are close to certain
surface point. If no other surfaces are close, secondary light sources
positioned there have very little of no contribution to the scene.

To account for the aforementioned heuristics during importance
warping, we replace the flux in Equation 4 by the probability:
pΦ = Φ · (1−O) ·P. The corresponding texture storing this term
for the light view is called importance sampling buffer and replaces
the RSM flux buffer for importance sampling.

3.6 Fast Rendering with Ambient Occlusion

The importance warping method described above works perfectly
for two-dimensional shadow maps as used for spot-lights. For
omni-directional lights most often cube shadow maps or dual-
paraboloid shadow maps are used. Although an importance sam-
pling for each individual cube side or paraboloid map can be
thought of or an initial pre-warping step can be performed to dis-
tribute samples across sub-textures, this is always critical in terms
of performance. Keeping in mind that not the geometry processing,
that is the number of light sources, but the fragment processing is
the bottleneck, we propose another procedure that proved to work
well for diffuse surfaces (for all types of primary light sources, such
as spot and point lights): assuming a regular sampling of the scene
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Figure 6: A comparison of our method (left) and Instant Radios-
ity (integrated into a ray tracer). The latter produces soft-shadows
and handles occlusion for indirect lighting, but nevertheless the re-
sults are comparable. For both images we used 1000 indirect light
sources generated with a quasi-random walk.

in the shadow map textures, we use a uniform distribution of light
sources in the shadow map and scale the flux by the ambient occlu-
sion term. By this, secondary light sources that are likely negligible
become smaller and thus do not consume valuable processing time
and memory band-width. Results from this method are presented
in Figure 13 and Table 3.

3.7 Indirect Illumination without RSMs

Our method does not necessarily rely on Reflective Shadow Maps
when other methods are used to determine the secondary light
sources. In many game typical situations, e.g. indoor games, a
space partitioning tree is stored along with the geometry. Actually
these data structures are used for collision detection, but they can
also be used to intersect rays from the light source with the scene
geometry. Either primary rays or a quasi-random walk as for Instant
Radiosity can be computed and indirect illumination can be added
to the scene without computing RSMs. Figure 6 shows a rendering
of the Cornell Box with Instant Radiosity.

4 Implementation

We implemented our approach using Direct3D9 and the High-Level
Shader Language and programmable graphics hardware supporting
the Vertex Shader 3.0 profile. It is used to read the position, di-
rection and flux for the secondary light sources from the RSM. By
using an additional render pass and so-called vertex-textures it is
possible to circumvent this profile and to use our method together
with older graphics hardware. If an Instant Radiosity approach is
used, we need of course no RSM and the light source data can be
passed as a static vertex array to the hardware.

Different passes are required to obtain the final image. When us-
ing RSMs, the task of the first pass is to render the scene as seen
from the light source and store the world space position, normal
and reflected flux of the visible surfaces. As in the original RSM
implementation, we use a filtered texture look-up for rendering the
flux in order to avoid flickering of the indirect lighting. When us-
ing non-diffuse surfaces, we also store the exponent of the Phong
model for importance sampling. In order to read from RSM textures
during vertex processing, contemporary hardware demands that the
internal format is a 32-bit float quadruple per texel.

The next step is to create the deferred shading buffers. For this we
render the scene (for the camera view) into textures with preferable
low memory-consumption. The world-space position is stored to-
gether with the distance to the light source (for the shadow test)

with 3 + 1 16-bit floats. The surface normals and parameters are
represented by 4×8-bit textures. These dynamic textures are view
dependent and need to be updated whenever the light source or the
camera moves.

For the rendering of the indirect illumination, we prepare a tex-
ture which stores the pre-computed uniform sampling pattern as
color-coded RGB triples. The importance sampling step – if used
– takes these sampling position and a mip-mappable version of the
RSM flux buffer (or the importance sampling buffer) as input and
computes the new sampling positions and outputs them to another
texture. This can be done by rendering a single quadrilateral and ap-
plying a fragment shader that computes the warping for each sam-
pling individually. The mip-mappable flux or importance sampling
buffer respectively has to be created from the 32-bit floating point
textures, as current hardware does not support automatic mip-map
generation for these.

For rendering the contribution of a secondary light source, we send
a sphere mesh (together with the texture coordinate, where the
sampling position is found in the above-mentioned texture) to the
graphics hardware. For each mesh vertex the vertex shader reads the
sampling position and herewith the light source data from the RSM.
Then it computes the tangent space and computes the elliptical ap-
proximation of the reflection properties. Afterwards the vertex is
transformed accordingly into world space. The fragment shader
then computes the contribution for each covered pixel. Please note
that we compute and accumulate the contribution from all light
sources to a surface point. The light-receiving surfaces themselves
are assumed to be diffuse and then, in a final step, we apply the sur-
face parameters to the accumulated contribution, e.g. multiply the
accumulated light with the surface’s diffuse color. The submission
of the hemisphere mesh and the texture coordinates for the sam-
ple position texture can be efficiently done using instancing tech-
niques. Nevertheless we also measured the performance using du-
plicated meshes (differing only in the texture coordinate) and got
nearly identical timings.

5 Results and Comparison

We have tested our novel method in various, also game typical, sit-
uations. For the timings given in this section we used a GeForce
6800 GT graphics board with 350 MHz clock rate and 16 shader
pipelines. Since our approach performs all computations on the
GPU, the CPU has no impact on rendering performance. Unless
mentioned otherwise, all images were rendered at a resolution of
512× 512. Experiments showed, that the performance bottleneck
is – depending on the used graphics hardware – either fragment
processing or (more frequently) memory band-width. For the latter
reason, we accumulate the indirect light contributions and apply the

scene update render time (ms)
dynamic light and camera 10.4
dynamic light, static camera 10.8
static light, dynamic camera 9.3
static scene, just render final image 6.9

Table 1: Performance analysis for the caustic ring rendering (see
Fig. 4, left). Importance sampling (3 levels, method B) is used
for the 4096 rendered secondary light sources, the image size is
5122. Please note that ’static camera’ is slower then the first option,
because no fragments are discarded during splatting of the indirect
illumination by depth buffer tests. The depth buffer is only valid if
the deferred shading buffers, i.e. dynamic cameras, are updated in
this example setting.
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A, 1 level A, 2 levels A, 3 levels A, 4 levels B, 3 levels B, 4 levels

Figure 7: Importance sampling as described in Sec. 3.5 according to pΦ = Φ · (1−O) ·n. Three or more levels provide good samplings and
both methods provide comparable results.

surface colors in a final render pass. Figure 11 shows the influence
of different cut-off values, that is, different bounds for determining
a significant contribution by a light source, on image quality and
performance. Larger values cause smaller bounding volumes and
thus less fragment shader executions and memory traffic. The same
effects can be concluded from Table 3 which presents results from
the impact of considering ambient occlusion for the distribution of
secondary light sources (results are shown in Figure 13). The time
required for the computation of the RSM and the deferred shading
buffers and the therewith connected render target switches can be
taken from Table 1. The importance sampling duration is shown
in Table 2. A comparison of RSMs and our method with different
quality settings and rendering speeds is shown in Figure 12.

importance sampling levelsmethod samples
1 2 3 4

32 0.123 0.238 0.541 1.739A
64 0.148 0.358 1.019 3.484
32 0.111 0.183 0.422 1.274B
64 0.125 0.258 0.754 2.584

Table 2: Duration of the importance warping (in milliseconds) in-
cluding the necessary render target changes on a GeForce 6800 GT.

resolution of without with
final image indirect lighting ambient occlusion term

5122 5122 27 37
5122 2562 63 85

Table 3: Rendering times (in frames per second) for the scene
shown in the teaser and in Fig. 13 with and without the modula-
tion of the 256 secondary light sources by the ambient occlusion
term.

6 Discussion

Although it is hard to compare the original Reflective Shadow Map
approach and our method directly, besides from subjective compari-
son of the result images, we can give a qualitative analysis of neces-
sary computations. The indirect light computation and the thereby
caused memory transfer has the greatest impact on performance. In
this discussion, we only consider the data associated with each light
source (position, direction, and flux) and the position and normal of
the lit surface. The surface color can be applied after computing the
light’s contribution (as described in Section 5).

At first we consider the RSM approach with a full per-pixel eval-
uation, that is, no screen-space interpolation. Let the image reso-
lution be P pixels, and the number of samples be SRSM . Then the
number of evaluations of Eq. 2 is P · SRSM and the memory trans-
fer is P · SRSM · 112 bits. The memory footprint consists of 16 bits

for reading the sample position from a texture, 48 bits for the light
source position (3×16 bits float), 24 bits for the light direction and
24 bits for the flux. Note that all look-ups for this data have to be
performed as slow dependent texture reads. The receiver data has
only to be read once and is ignored here as it has negligible impact.

Regarding our splatting method, we quantify the cost as follows:
for each image pixel, we can estimate an average overdraw. For the
example shown in Figure 8 this is OSII ≈ 125. As the light’s data is
associated with the light’s bounding geometry and is thus directly
available for the fragment shader, we need to read the receiver data
for each pixel, which can be done by non-dependent look-ups (48
bits position plus 24 bits normal data). The memory transfer is
P ·OSII ·72 bits.

Of course, SRSM and OSII cannot be compared directly, but nonethe-
less we can draw some conclusions. The computational effort and
above all the memory transfer for our method is significantly lower
than a brute-force RSM implementation and we replace slow de-
pendent texture look-ups by faster non-dependent ones. For RSMs
the light sources are independently selected for each rendered pixel,
which can cause blocky artifacts if the sample number is too low.
Using our approach, the average number of indirect lights for each
pixel is OSII , being much lower than SRSM in typical scenarios. Al-
though we reconstruct indirect illumination from fewer samples,
we achieve a visually more pleasing and coherent result, because
the light source samples are constant for a whole rendered frame.

In order to achieve interactive frame rates, the RSM approach re-
duces the number of lighting computations by a screen-space inter-
polation of indirect light from a coarser image. The drawbacks are
higher implementation work, more render passes and high depen-
dency on scene complexity. Our method is sufficiently fast to do
without an interpolation pass, but it would also be non-trivial: the
refinements of the initial, coarse image requires the computation of
indirect light for individual pixels.

Figure 8: This image shows the overdraw due to the splatting of 768
indirect lights. The average overdraw in this scenario is 125, pure
white corresponds to 256 times. The average number of fragments
per pixel light is 5122 ·125/768 ≈ 42600.
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7 Conclusion

We presented a method for the rendering of approximate indirect
lighting effects in real-time. When using our approach together
with Reflective Shadow Maps all computations are completely per-
formed by the GPU. We showed how importance sampling can
be used to increase performance in the case of 2D shadow maps
and presented possibilities for speed-ups when using other types of
shadow maps. We presented results for both diffuse and non-diffuse
surfaces and for game-typical situations. As in previous interactive
methods, we cannot account for self-shadowing for indirect lighting
and thus propose to use ambient occlusion methods for the rendered
models.

In the future we would like to adapt the splat shape for reflective and
refractive surfaces to the local surface curvature. By this, indirect
illumination effects from such surfaces can be rendered with less
artifacts and better approximation of sharp features.

Appendix – Bounds on Indirect Light

Sources

In this appendix we describe the computation of bounds for the
region that receives significant light from indirect diffuse and glossy
light sources. We consider illumination significant if it is above a
threshold Ilow.

It is easiest to describe the significant region for a pixel light p in
spherical coordinates centered at p, i.e. each world-space point is
described by a direction ω and a distance r. The exitant light of p
depends on ω , as given in Eqs. 1 and 3 and as shown in Fig. 2. The
irradiance E at a point with polar coordinates (ω,r) thus depends on
ω , but also on the distance to the light source r: E(ω,r) ∝ Ip(ω)/r2.
E also depends on the cosine of the incident angle, but since we
cannot know this in advance, we have to use the bound of one for
this term. So we can bound the irradiance at (ω,r) by Ip(ω)/r2.

At this point, we can easily unify diffuse and glossy lights. We de-
note as α the angle to the surface normal np for diffuse lights (Eq. 1)
and the reflection direction rp for specular lights (Eq. 3). If we use
an exponent n = 1 for diffuse lights, the irradiance can be bound by
the 2D polar function B(α,r) = I0 cos(α)n/r2. In the following we
can restrict to the 2D case, the 3D-shape is rotationally symmetric.

The region of influence of p is then bound by the isosurface
B(α,r) = Ilow. Because B is continuously decreasing with r, we

can describe this surface as polar function r(ω) =
√

I0 cosαn

Ilow
. Fig. 9

shows the isosurfaces for I0 = 1, Ilow = 1 and Phong exponents 1,
10, and 100.
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Figure 9: Left: Illumination computation due to a pixel light. Right:
Significant regions for pixel lights with exponents 1, 10, and 100.

The upper half of these isosurfaces can be described by the explicit
function

F(x) = x
n

n+2

√

1− x
4

n+2 . (7)

We fit an ellipse around these shapes with the following heuristic.
First, we compute the maximum of F . If the maximum is at xmax,
we put the center of our ellipse at (xmax,0)T . We use the x- and
y-axes as main axes of the ellipse. As height we select F(xmax). Fi-
nally, we select the width such that the ellipse covers the x-interval
[0,1]. Fig. 10 shows the isosurfaces in black and the bounding el-
lipses in gray for n = 1 and n = 10.
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Figure 10: Isosurfaces and bounds for n = 1 and n = 10.

The maximum can be found by finding the root of F’s derivative.
Its x-position is at

c(n) =
n

n+2

n+2
4

, (8)

thus we set the center of the ellipse to (c(n),0)T and as its height
we use h(n) = F(c(n)), and as width w(n) = max{c(n),1− c(n)}.
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Ilow = 1%I0, 14 fps Ilow = 5%I0, 54 fps Ilow = 7%I0, 74 fps

Figure 11: Different intensity cut-off values, and thus different sizes of the light’s bounding volume, affect rendering speed and quality.

RSM, 1020 samples, 14 fps RSM, 308 samples, 44 fps RSM, 156 samples, 82 fps

SII, 768 lights, Ilow = 5%I0, 48 fps SII, 768 lights, Ilow = 10%I0, 83 fps SII, 108 lights, Ilow = 5%I0, 254 fps

Figure 12: A comparison of Reflective Shadow Maps (RSM) and our method (SII): although the RSMs performance is not dependent on the
distance to the secondary light sources, unfavorable lighting situations cause artifacts. Timings for the RSM images were taken with a 642

screen space sub-sampling. Our method provides a smooth indirect illumination and higher frame rates. Moreover, the trade-off between
speed and quality does not cause severe artifacts. Timings for both methods were made without RSM or deferred shading buffer updates.

secondary light sources indirect illumination only ambient occlusion term secondary light sources indirect illumination only
uniform distribution, equally weighted modulated by ambient occlusion term

Figure 13: As fragment processing and memory bandwidth are the bottlenecks, the importance sampling step can be skipped and ambient
occlusion modulated light sources can be used to increase performance.
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Figure 1: A real-time rendering of a metal ring and its caustics on a wood plate
at more than 95 frames per second. A subset of the glossy pixel lights in shown
in the center image. A refractive glass tweety (only refraction at the back-facing
surface) runs at 150 frames per second.

Figure 2: A comparison of our method (left) and
Instant Radiosity (right). The latter produces soft-
shadows and handles occlusion for indirect lighting.
For both images we used 1000 indirect light sources.

Ilow = 1%I0, 14 fps Ilow = 5%I0, 54 fps Ilow = 7%I0, 74 fps
Figure 3: Different intensity cut-off values, and thus different sizes of the light’s bounding volume, affect rendering speed and quality.

RSM, 1020 samples, 14 fps RSM, 308 samples, 44 fps RSM, 156 samples, 82 fps

SII, 768 lights, Ilow = 5%I0, 48 fps SII, 768 lights, Ilow = 10%I0, 83 fps SII, 108 lights, Ilow = 5%I0, 254 fps
Figure 4: A comparison of Reflective Shadow Maps (RSM) and our method (SII): although the RSMs performance is not dependent on the
distance to the secondary light sources, unfavorable lighting situations cause artifacts. Timings for the RSM images were taken with a 642

screen space sub-sampling. Our method provides a smooth indirect illumination and higher frame rates. Moreover, the trade-off between
speed and quality does not cause severe artifacts. Timings for both methods were made without RSM or deferred shading buffer updates.

secondary light sources indirect illumination only ambient occlusion term secondary light sources indirect illumination only
uniform distribution, equally weighted modulated by ambient occlusion term

Figure 5: As fragment processing and memory bandwidth are the bottlenecks, the importance sampling step can be skipped and ambient
occlusion modulated light sources can be used to increase performance.
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